پیش بینی بارش ماهانه با استفاده از بسته های تخصصی سری های زمانی در محیط نرمافزار R (مطالعه موردی: ایستگاه اراز کوسه استان گلستان)

Authors: not saved
Abstract:

This article doesn't have abstract

Upgrade to premium to download articles

Sign up to access the full text

Already have an account?login

similar resources

بررسی کارایی مدل‌های سری زمانی آریما و هالت وینترز در پیش بینی دما و بارش ماهانه (مطالعه موردی: ایستگاه لتیان)

پارامتر‌های اقلیمی از جمله دما و بارش نقش مهمی در مدیریت منابع آب حوضه‌آبریز و برنامه‌ریزی‌های کشاورزی دارند. از جمله مدل‌های پیش بینی کوتاه مدت این پارامترها، مدل‌های سری زمانی هستند. در تحقیق حاضر، توانایی مدل‌های سری زمانی در پیش‌بینی دما و بارش ماهانه ایستگاه لتیان مورد بررسی قرار گرفته است. بدین منظور ابتدا به کمک آزمون من‌کندال فصلی روند داده‌ها بررسی گردید و سپس مدل‌های مختلف خودهمبسته ب...

full text

مدلهای تصادفی سری زمانی در پیش بینی بارندگی ماهانه (مطالعه موردی: ایستگاه هاشم آباد گرگان)

در سالهای اخیر محدودیت منابع آبی جهت تامین آب مورد نیاز کشاورزی و غیر کشاورزی موجب بروز مشکلات زیادی شده است و باران یکی از منابع مهم تامین آب به حساب می آید. بارندگی یکی از مهمترین مولفه های ورودی به سیستم های هیدرولوزیکی محسوب می شود که مطالعه و اندازه گیری آن در اکثر موارد برای مطالعات رواناب، خشکسالی، آبهای زیر زمینی، سیلاب، رسوب و ... لازم و ضروری است. بنابراین پیش بینی و برآورد نزولات جوی...

full text

مدلهای تصادفی سری زمانی در پیش بینی بارندگی ماهانه (مطالعه موردی: ایستگاه هاشم آباد گرگان)

در سالهای اخیر محدودیت منابع آبی جهت تامین آب مورد نیاز کشاورزی و غیر کشاورزی موجب بروز مشکلات زیادی شده است و باران یکی از منابع مهم تامین آب به حساب می آید. بارندگی یکی از مهمترین مولفه های ورودی به سیستم های هیدرولوزیکی محسوب می شود که مطالعه و اندازه گیری آن در اکثر موارد برای مطالعات رواناب، خشکسالی، آبهای زیر زمینی، سیلاب، رسوب و ... لازم و ضروری است. بنابراین پیش بینی و برآورد نزولات جوی...

full text

پیش بینی جریان ماهانه رودخانه با استفاده از ترکیب مدل های خطی سری زمانی و شبکه های بیزین (مطالعه موردی: رودخانه بختیاری)

یکی از مسائل مهم در مدیریت منابع آب، تهیه و توسعه مدل‌های مناسب به منظور پیش‌بینی دقیق‌تر فرآیند جریان رودخانه‌ها می‌-باشد. بدین منظور در مطالعه حاضر برای پیش‌بینی جریان ماهانه رودخانه بختیاری، در دوره آماری 1395-1334، از مدل‌های سری-زمانی خطی (ARMA)، مدل هوشمند شبکه بیزین (BN) و مدل تلفیقی BN-ARMA استفاده شد. عملکرد مدل‌های توسعه یافته براساس شاخص‌های آماری جذر میانگین مربعات خطا (RMSE)، ضریب ...

full text

My Resources

Save resource for easier access later

Save to my library Already added to my library

{@ msg_add @}


Journal title

volume 3  issue 2

pages  1- 12

publication date 2015-02-20

By following a journal you will be notified via email when a new issue of this journal is published.

Keywords

Hosted on Doprax cloud platform doprax.com

copyright © 2015-2023